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Abstract

In this article we examine two relatively new MCMC methods which allow for Bayesian

inference in diffusion models. First, the Monte Carlo within Metropolis (MCWM) algorithm

(O’Neil, Balding, Becker, Serola and Mollison, 2000) uses an importance sampling approxima-

tion for the likelihood and yields a Markov chain. Our simulation study shows that there exists

a limiting stationary distribution that can be made arbitrarily “close” to the posterior distribu-

tion (MCWM is not a standard Metropolis-Hastings algorithm, however). The second method,

described in Beaumont (2003) and generalized in Andrieu and Roberts (2009), introduces aux-

iliary variables and utilizes a standard Metropolis-Hastings algorithm on the enlarged space;

this method preserves the original posterior distribution. When applied to diffusion models,

this pseudo-marginal (PM) approach can be viewed as a generalization of the popular data

augmentation schemes that sample jointly from the missing paths and the parameters of the

diffusion volatility. The efficacy of the PM approach is demonstrated in a simulation study of

the Cox-Ingersoll-Ross (CIR) and Heston models, and is applied to two well known datasets.

Comparisons are made with the MCWM algorithm and the Golightly and Wilkinson (2008)

approach.
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1 Introduction

A diffusion process is described as a solution to the stochastic differential equation (SDE)

dXt = µ(Xt, θ) dt + σ(Xt, θ) dWt, 0 ≤ t ≤ T , (1)

where Xt takes values in ℜd, µ and ν = σσT are drift and covariance coefficients of dimension d and

d × d respectively, θ is the parameter vector, and Wt is a d-dimensional Brownian motion. As in

Milstein, Schoenmakers and Spokoiny (2004), we assume the drift µ and covariance ν are bounded

and are infinitely differentiable with continuous and bounded derivatives of all order, and σ(·) is

invertible with bounded inverse. This implies existence and uniqueness of (1), and smoothness of

the transition density. For ease of notation we assume that X is time homogeneous.

We wish to perform Bayesian inference for the parameters of a continuous-time Markov process

X which is observed (possibly with noise) at discrete time points ti = i∆ (i = 0, . . . , n) yielding

observations x = (x0, . . . , xn). We denote the transition (or conditional) density of Xt+∆ = y given

Xt = x by p(∆, y|x, θ). By the Markov property, if all components of X at time ti (i = 0, . . . , n)

are observed without noise, the likelihood function is

L(x|θ) =
n−1
∏

i=0

p(∆, xi+1|xi, θ)

and the posterior distribution is given by

π(θ|x) ∝ π(θ)L(x|θ),

where π(θ) is the prior distribution on θ.

It is well known that if the data are recorded at discrete times, parametric inference for diffusions

using the likelihood of the data is difficult. This is primarily because the corresponding likelihood

function is not available in closed form. See Sørensen (2004) for a review of inferential methods for

diffusions. We focus on Bayesian inference in this paper.

Many methods have been proposed and studied for diffusions which can be transformed to

have unit diffusion coefficient (the so-called reducible diffusions). Methods that rely on introducing

missing (latent) data are in Elerian, Chib and Shephard (2001); Roberts and Stramer (2001); Eraker

(2001). It has been well documented that näıve data augmentation techniques lead to problems of

high dependency between the covariance parameters and the diffusion paths (see Elerian et al., 2001;

Roberts and Stramer, 2001). The dependency problems can largely be solved by an appropriate

re-parametrization for reducible diffusions (see Roberts and Stramer, 2001; Kalogeropoulos, 2007).

A different approach for reducible diffusions, built upon exact simulation, has been developed in

Beskos, Papaspiliopoulos, Roberts and Fearnhead (2006); Beskos, Papaspiliopoulos and Roberts
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(2009).

Inference for irreducible diffusions is much harder. This class of models, which includes most

interesting multi-dimensional diffusion models, is not thoroughly covered or understood in the

literature. One approach for Bayesian inference is to use a standard Metropolis-Hastings (MH)

algorithm with an approximation for the likelihood. One such method, described in Stramer,

Bognar and Schneider (2010), is to use the analytical closed-form (CF) likelihood approximations

of Aı̈t-Sahalia (2002, 2008) to approximate the likelihood. Their method also addresses the problem

that the CF likelihood approximation does not integrate to 1 when far in the tails. This method

requires that the time interval ∆ is “small”.

Methods that rely on introducing missing (latent) data are challenging for irreducible diffusions

because there is not an obvious re-parametrization to break down the dependency between the

covariance parameters and the diffusion paths. We explore the possibility of augmenting without

re-parametrization techniques using the closed-form (CF) analytical log-likelihood approximations

derived in Aı̈t-Sahalia (2002, 2008). Methods that rely on re-parametrization techniques are de-

fined in Kalogeropoulos, Roberts and Dellaportas (2010); Golightly and Wilkinson (2008). The

Kalogeropoulos et al. (2010) approach, defined through time change transformations, is very ef-

ficient, although strong conditions on the covariance coefficient are required. The Golightly and

Wilkinson (2008) (GW) approach follows Chib, Pitt and Shephard (2006) and provides another

possible transformation to overcome the dependency structure. While the promising GW approach

can be applied to a large class of diffusions, it is not yet rigorously justified in the literature.

The need for additional efficient algorithms for irreducible diffusions is apparent. In this article

we apply two general Bayesian algorithms to irreducible diffusions. One technique, defined in O’Neil

et al. (2000), is the Monte Carlo within Metropolis (MCWM) algorithm. Because MCWM replaces

the likelihood with a simulation-based approximation, MCWM is not a standard MH algorithm

and therefore all of the well known properties of MH samplers do not apply. MCWM is discussed

and studied in Beaumont (2003) and Andrieu and Roberts (2009). We discuss the application of

the MCWM algorithm to diffusion models in Section 3.

Another algorithm, introduced in Andrieu and Roberts (2009), is called the pseudo-marginal

(PM) approach. The PM algorithm is a generalization of the Grouped Independence Metropolis-

Hastings (GIMH) algorithm introduced by Beaumont (2003). In short, suppose we wish to sample

from the density function p(θ), but this is not possible because p(θ) is intractable. Suppose, however,

that we can sample from the joint distribution (θ,u1, . . . ,uN ) where u1, . . . ,uN are N independent

auxiliary variables. Using the samples from (θ,u1, . . . ,uN ), we can simply marginalize to obtain

samples from p(θ). In this article, we apply this general approach to diffusion models (see Section

4); in particular we discuss different updating schemes of the parameters. The PM approach is a

generalization of jointly updating the parameters and missing data in a Metropolis-Hastings (MH)

algorithm (Golightly and Wilkinson, 2006). It overcomes the problem of low acceptance rate of the
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latter.

The remainder of this paper is organized as follows. Section 2 discusses data augmentation

techniques Sections 3, 4, and 5 detail the MCWM and PM algorithms, while Section 6 applies

these techniques to general stochastic volatility models. Section 7 provides a detailed simulation

study for the Cox Ingersoll Ross (CIR) and Heston models. Section 8 uses these aforementioned

models to analyze two real-world datasets, and the competing Golightly and Wilkinson (2008)

algorithm is briefly compared to the PM and MCWM approaches. Section 9 contains concluding

remarks.

2 Data Augmentation

One common approach in the literature for Bayesian estimation of diffusion models, studied in-

dependently by Jones (1999), Eraker (2001), and Elerian et al. (2001), is to consider estimating

diffusion models on the basis of discrete measurements as a classic missing-data problem. The idea

is to introduce augmented data points between every two consecutive (observed) data points so

that the likelihood can be well approximated. The time-step interval [0,∆] is partitioned into M

sub-intervals via grid points 0 = τ0 < τ1 < . . . < τM = ∆ (each sub-interval has length h = ∆/M)

such that the resulting partition is sufficiently fine for some discrete approximation of the diffusion

X to be sufficiently accurate. The unobserved data points of the process X are treated as missing

data. The resulting posterior distribution is

πmiss
(M) (θ,u|x) ∝ π(θ)

n−1
∏

i=0

M−1
∏

m=0

p(a)(h, ui,m+1|ui,m, θ), (2)

with ui,0 = xi, ui,M = xi+1, u = (u0, . . . ,un−1), where ui = (ui,1, . . . , ui,M−1) is a discrete-

time skeleton of (1) between xi and xi+1, and p(a)(h, ui,m+1|ui,m, θ) is some approximation of the

transition density p(h, ui,m+1|ui,m, θ). One such approximation is the Euler approximation:

p(a)(h, ui,m+1|ui,m, θ) = φ (ui,m+1; ui,m + hµ(ui,m, θ), hν(ui,m, θ))

where φ(·;µ, ν) denotes the normal density with mean µ and covariance ν.

The resulting algorithm proceeds by alternating between simulation of θ conditional on the

augmented data u, and simulation of the missing data blocks conditional on θ. Updating the

augmented data ui between xi and xi+1, i = 0, . . . , n − 1, requires generating the intermediate

points according to their conditional distribution given the end points. A series of Metropolis

within Gibbs steps is commonly used. Various sampling strategies for the missing data have been

proposed; see Golightly and Wilkinson (2008) for a review. A commonly used proposal for a missing

data block ui is the so called Modified Brownian Bridge (MBB) sampler defined in Durham and

4



Gallant (2002) as

Ui,m+1 = ui,m +
xi+1 − ui,m

M − m
+

√

h
M − m − 1

M − m
σ(ui,m, θ)Zm+1 m = 0, . . . ,M − 2 (3)

where Ui,m = ui,m, ui,0 = xi, ui,M = xi+1, and {Z1, . . . , ZM−1} are i.i.d. standard multivariate

normal variables. The MBB sampler has the desirable property that the conditional mean of

Ui,m+1|Ui,m = ui,m is a linear interpolation, over the time interval [mh,Mh = ∆] of ui,m and the

final state xi+1 (= ui,M ) at time ∆. It also has the advantage that the conditional covariance is a

linear interpolation of the covariance at time mh and the covariance (zero) at time Mh = ∆.

The problem with this approach is that there exists a perfect correlation between the augmented

data points and the covariance ν as h → 0. This was noted in a simulation study in Elerian et al.

(2001) and was justified theoretically in Roberts and Stramer (2001). The reason for this is the

property of diffusions that relates ν with the quadratic variation of the process,

lim
h→0

M−1
∑

m=0

(X(m+1)h − Xmh)(X(m+1)h − Xmh)T =

∫ ∆

0
ν(Xs, θ) ds a.s.

This translates into reducibility when h → 0. Therefore, while data augmentation schemes can

be satisfactory for small M , they can break down as M increases. The problem may be solved if

we apply a transformation so that the algorithm based on the transformed diffusion is no longer

reducible as h → 0.

As a side project of this article, we extensively experimented with augmentation using the

closed-form (CF) analytical log-likelihood approximations derived in Aı̈t-Sahalia (2002, 2008). The

posterior distribution is

πmiss
(M) (θ,u|x) ∝ π(θ)

n−1
∏

i=0

M−1
∏

m=0

p
(K)
CF (h, ui,m+1|ui,m, θ),

where p
(K)
CF (h, ui,m+1|ui,m, θ) denotes the Kth order closed-form approximation of sub-density

p(h, ui,m+1|ui,m, θ). The main idea behind data augmentation is to choose M sufficiently big so

that we can accurately approximate the transition density over time intervals of length h = ∆/M .

Choosing a “better” approximation (than the Euler approximation) for the transition density may

allow for fewer augmented points and thus reduce the dependency between the diffusion function

and augmented data.

We therefore employed the closed-form approximation with the MBB sampler as the proposal

distribution for the missing data. Our simulation study showed that, in general, the transition

density can be accurately estimated with a larger time step h using the CF approximation than

can be used with the Euler approximation. However, the CF approximation is a local approximation
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and the error increases as θ moves away from the MLE (it can explode to infinity in the tails of

the posterior). Although the error may be small in absolute terms, this error tends to propagate as

the amount of data augmentation increases (i.e. as the number of CF sub-densities increases). In

a simulation study for the CIR model defined in (14), we found that the sampler would frequently

become stuck when in the tails of the posterior distribution; less data augmentation (smaller M)

tended to minimize the probability of the sampler becoming stuck since there was less propagation

of error. If accurate estimates of the transition density can be obtained using the CF approximation

with small M (say M ≤ 5), then this scheme may be practical. In general, however, using the CF

approximation for the sub-densities simply can not be robustly applied to a wide range of models.

Another way to overcome the dependency structure is to update all parameters and missing

data simultaneously. However, this will typically result in a very low acceptance rate due to the

high dimensionality of the update. In fact, this is a special case of the PM algorithm described in

Section 4.

3 Monte Carlo within Metropolis (MCWM)

We use the following notation throughout the paper:

⊲ u = (u0,u1, . . . ,un−1) denotes the entire collection of samples, where

⊲ ui = (ui,1, . . . ,ui,N ) denotes the collection of samples within the ith block, i = 0, . . . , n − 1,

and

⊲ ui,k = (ui,k,1, . . . , ui,k,M−1) denotes the kth sample (path) within the ith block where ui,k,0 =

xi, ui,k,M = xi+1, k = 1, . . . , N , and i = 0, . . . , n − 1.

Monte Carlo within Metropolis (MCWM) is based on importance sampling estimators for the

transition density. The transition density p(∆, xi+1|xi, θ) is approximated by

p(M)(∆, xi+1|xi, θ) =

∫ M−1
∏

m=0

φ (um+1; um + hµ(um, θ), hν(um, θ)) du1, . . . , uM−1 (4)

where h = ∆/M , u0 = xi, uM = xi+1, and M is “big” enough so that the resulting partition is

sufficiently fine for the Euler approximation to be sufficiently accurate.

The integral in (4) is evaluated in Durham and Gallant (2002) using importance sampling:

p(M)(∆, xi+1|xi, θ) = Eq[RM (U)] (5)
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where U = (U1, . . . , UM−1),

RM (U) =

∏M−1
m=0 φ (Ui,m+1; Ui,m + hµ(Ui,m, θ), hν(Ui,m, θ))

q(U)

q(·) is a density function on ℜd×(M−1) referred to as the importance sampler (or importance sam-

pling density), and Eq is the expectation with respect to density q. Thus, U is generated according

to q and is weighted by RM (U). The posterior distribution is therefore estimated as

π(M)(θ|x) ∝ π(θ)
n−1
∏

i=0

p(M)(∆, xi+1|xi, θ). (6)

The expectation in (5) cannot be evaluated, but it can be estimated by drawing N independent

paths using the importance sampler q(·), evaluating the ratio RM for each path, and determining

the (sample) mean of RM . We denote this estimator by p(M,N)(∆, y|x, θ) where

p(M,N)(∆, xi+1|xi, θ) =
1

N

N
∑

k=1

RM (Uk) (7)

and Uk = (Uk,1, . . . , Uk,M−1) is a random sample from q, k = 1, . . . , N . Note that

p(M,N)(∆, xi+1|xi, θ)
a.s.→ p(M)(∆, xi+1|xi, θ) as N → ∞.

The posterior distribution is thus stochastically (vs analytically) approximated as

π(M,N)(θ|x) ∝ π(θ)

n−1
∏

i=0

p(M,N)(∆, xi+1|xi, θ)

where p(M,N) is defined in (7). Note that nN MBB samplers are needed to evaluate π(M,N)(θ|x)

for each θ. Therefore, there is no target distribution and standard MH algorithms cannot be

automatically used.

Yet, technically the MCWM algorithm follows the same steps as a standard MH algorithm with

“target distribution” π(M,N)(θ|x). To avoid confusion, we describe one iteration of the MCWM

algorithm.

Algorithm 1. MCWM Algorithm

1. Given the current state of the chain θ, for each block i, i = 0, . . . , n − 1, do the follow-

ing: Draw ui,k, a random sample (path) between xi and xi+1 from the MBB sampler (3),

for k = 1, . . . , N . This MBB sampler is independent of the MBB samplers from previous

iterations. Calculate the importance sampling based approximation p(M,N)(∆, xi+1|xi, θ) of

p(M)(∆, xi+1|xi, θ) as described in (7).

2. Propose a new value θ∗ from some proposal density q(θ, ·). Given θ∗, repeat step 1 to obtain the
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importance samples u
∗
i,1, . . . ,u

∗
i,N in each block i, i = 0, . . . , n− 1 (again, this is independent

of the MBB samplers from previous iterations). Using these new importance samples u∗,

compute p(M,N)(∆, xi+1|xi, θ
∗).

3. Accept θ∗ with probability

α(M,N)(θ, θ∗) = min

[

π(θ∗)
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ
∗)

π(θ)
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ)

q(θ∗, θ)

q(θ, θ∗)
, 1

]

As in Andrieu and Roberts (2009), we note that due to the fact that the MBB’s are independent

at each iteration, it can be easily checked that the MCWM algorithm generates a Markov chain.

However, π(M)(θ|x), defined in (6), is not the invariant distribution for the chain. Since MCWM

is not a standard MH algorithm, the existence of an invariant distribution for each N needs to be

assumed (we denote it by π̃(M,N) for each N ∈ IN+). This is not obvious, however. Convergence of

π̃(M,N) to π(M) needs to be explored.

4 The Pseudo-Marginal Approach

Following the pseudo-marginal algorithm introduced in Andrieu and Roberts (2009), we define a

target density on Θ ×ℜnN(M−1) as follows:

πNew Target
(M,N) (θ,u|x) ∝ π(θ)

n−1
∏

i=0

p(M,N)(∆, xi+1|xi, θ)

n−1
∏

i=0

N
∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ) (8)

where q(·|θ) is the MBB sampler defined in (3). Note that (2) is a special case of (8) with N = 1.

Also, in contrast to π(M)(θ|x) defined in (6), πNew Target
(M,N) (θ,u|x) can be explicitly evaluated (up to

a constant of proportionality). It is easy to check that πNew Target
(M,N) (θ,u|x) is a probability density

function on ℜnN(M−1) with marginal distribution π(M)(θ|x) for all N ∈ IN.

As often is the case, simulating a chain {(θt,ut)}∞t=0 with stationary density πNew Target
(M,N)

(θ,u|x)

can be done in many different ways using MCMC algorithms. Assume that (1) can be written as

dXt = µ(Xt, θ1) dt + σ(Xt, θ2) dWt, 0 ≤ t ≤ T .

To overcome the dependency structure between θ2 and u, we propose alternating between updating

(θ2,u) and θ1. We term this the Pseudo-Marginal (PM) algorithm as this is a special case of the

general PM algorithm. Thus, under some regularity conditions that guarantee irreducibility and

aperiodicity, π(M)(θ|x) is the marginal ergodic density for the PM algorithms. This is true for all

N ∈ IN. The acceptance rate of the PM algorithm as a function of N is rigorously analyzed in

Andrieu and Roberts (2009). We expect the acceptance rate to increase in N . For our applications
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this is supported by noting that for large N ,

n−1
∏

i=0

p(M,N)(∆, xi+1|xi, θ) ≈
n−1
∏

i=0

p(M)(∆, xi+1|xi, θ) (9)

which implies that
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ) is almost independent of the latent component u:

πNew Target
(M,N) (u|θ,x) ∝ π(θ)

n−1
∏

i=0

p(M,N)(∆, xi+1|xi, θ)
n−1
∏

i=0

N
∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ)

≈ π(θ)

n−1
∏

i=0

p(M)(∆, xi+1|xi, θ)

n−1
∏

i=0

N
∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ)

∝
n−1
∏

i=0

N
∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ).

Therefore, a small N may lead to low acceptance rates due to the discrepancy between the proposed

distribution of the latent component
∏n−1

i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ) and the true conditional

distribution of the latent component πNew Target
(M,N) (u|θ), while a “big” N will eliminate this problem.

We now describe one iteration of the PM algorithm.

Algorithm 2. PM Algorithm

1. For ease of notation, let (θt
1, θ

t
2,u

t) = (θ1, θ2,u). Propose a new value (θ∗2,u
∗) for (θt+1

2 ,ut+1)

from the proposal density

q2 ((θ2,u), (θ∗2 ,u
∗)) = q̃2(θ2, θ

∗
2)

n−1
∏

i=0

N
∏

k=1

q(u∗
i,k,1, . . . , u

∗
i,k,M−1|θ∗2)

where q̃2(θ2, ·) is some proposal density and q(·|θ∗2) is the MBB sampler (3) with covariance

function ν(·, θ1, θ
∗
2). Note that unlike the MCWM algorithm, we do not generate a “fresh” set

of u values; u is simply “dragged” from the previous iteration. Only u∗ needs to be generated.

2. Accept (θ∗2,u
∗) (i.e. set θt+1

2 = θ∗2 and ut+1 = u∗) with probability α(M,N)((θ2,u), (θ∗2 ,u∗)) =

9



min
[

r(M,N)((θ2,u), (θ∗2 ,u∗)), 1
]

where

r(M,N)((θ2,u), (θ∗2 ,u∗))

=
πNew Target

(M,N) (θ1, θ
∗
2,u

∗|x)

πNew Target
(M,N) (θ1, θ2,u|x)

∏n−1
i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ2)

∏n−1
i=0

∏N
k=1 q(u∗

i,k,1, . . . , u
∗
i,k,M−1|θ∗2)

q̃2(θ
∗
2, θ2)

q̃2(θ2, θ∗2)

=
π(θ1, θ

∗
2)

∏n−1
i=0 p(M,N)(∆, xi+1|xi, θ1, θ

∗
2)

∏n−1
i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ∗2)

π(θ1, θ2)
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ1, θ2)
∏n−1

i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ2)

×
∏n−1

i=0

∏N
k=1 q(ui,k,1, . . . , ui,k,M−1|θ2)

∏n−1
i=0

∏N
k=1 q(u∗

i,k,1, . . . , u
∗
i,k,M−1|θ∗2)

q̃2(θ
∗
2, θ2)

q̃2(θ2, θ
∗
2)

=
π(θ1, θ

∗
2)

∏n−1
i=0 p(M,N)(∆, xi+1|xi, θ1, θ

∗
2)

π(θ1, θ2)
∏n−1

i=0 p(M,N)(∆, xi+1|xi, θ1, θ2)

q̃2(θ
∗
2, θ2)

q̃2(θ2, θ
∗
2)

,

and p(M,N)(∆, xi+1|xi, θ1, θ
∗
2), p(M,N)(∆, xi+1|xi, θ1, θ2) are defined in (7) with u∗ and u re-

spectively. Otherwise set θt+1
2 = θ2 and ut+1 = u.

3. Propose a new value θ∗1 for θt+1
1 from some proposal density q̃1(θ1, θ

∗
1).

4. Accept θ∗1 (i.e. set θt+1
1 = θ∗1 ) with probability α(M,N)(θ1, θ

∗
1) = min

[

r(M,N)(θ1, θ
∗
1), 1

]

where

r(M,N)(θ1, θ
∗
1)

=
πNew Target

(M,N) (θ∗1, θ
t+1
2 ,ut+1|x)

πNew Target
(M,N) (θ1, θ

t+1
2 ,ut+1|x)

q̃1(θ
∗
1, θ1)

q̃1(θ1, θ∗1)

=
π(θ∗1, θ

t+1
2 )

∏n−1
i=0 p(M,N)(∆, xi+1|xi, θ

∗
1, θ

t+1
2 )

π(θ1, θ
t+1
2 )

∏n−1
i=0 p(M,N)(∆, xi+1|xi, θ1, θ

t+1
2 )

q̃1(θ
∗
1, θ1)

q̃1(θ1, θ
∗
1)

It is tempting to split up the latent process into blocks ui and alternate between updating

θ = (θ1, θ2) and ui, i = 0, . . . , n − 1. However, using this blocking strategy will lead to inefficient

algorithms. For N = 1 this is exactly the näıve data augmentation algorithm discussed in Section

2 with the MBB used as the proposal density for the missing data. As was mentioned before,

this algorithm suffers from high dependency between θ2 and the missing data u. Increasing N

does not help either as it decreases the acceptance rate of θ. This is because, as N increases,

p(M,N)(∆, xi+1|xi, θ) ≈ p(M)(∆, xi+1|xi, θ) and therefore the acceptance rate of the auxiliary vari-

ables u0, . . . ,un−1 will be very high. However, acceptance rate for θ2|u will be very small when

N is big; if ui,k are the MBB proposals generated with parameter θ, then πNew Target
(M,N) (θ∗,u|x) will

be significantly smaller than πNew Target
(M,N) (θ,u|x). The ineffectiveness of this blocking technique is

demonstrated at the end of Section 7.1.
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5 Choosing M and N

The transition density p(∆, y|x, θ) is approximated by the transition density of the Euler approx-

imation p(M)(∆, y|x, θ) with time step h = ∆/M . From Bally and Talay (1996), the error due to

discretization is of order 1/M and can be reduced by choosing a small time step h. Choice of M will

be important since it must be sufficiently large for the likelihood to be accurately approximated.

Convergence of the marginal posterior densities may be used as an overall diagnostic that M is

sufficiently big. The idea is to choose M equal to the value M0 such that the estimated marginal

posterior densities are approximately the same for M ≥ M0.

We next consider the question of choosing the number of importance samples N . The PM and

MCWM algorithms have differing optimal values of N . The choice of N for a special case of the

pseudo-marginal (PM) algorithm is introduced in Andrieu, Berthelsen, Doucet and Roberts (2010)

and is applied to our PM algorithms. The speed of convergence (and rapidity of mixing after

convergence) depends heavily on N . Following Pasarica and Gelman (2010) and Andrieu et al.

(2010), N can be optimized to maximize the expected squared jump distance (ESJD) defined as

ESJD =
T−1
∑

t=0

α(M,N)

[

(θt,ut), (θ∗,u∗)
]

‖θ∗ − θt‖2

where T is the number of Monte-Carlo iterations, θ∗ and u∗ are the proposals for θt+1 and ut+1

respectively. As expected, our simulation study (see Section 7) shows that ESJD increases in

N . In other words, when N is relatively small, the ESJD is low, which suggests slow mixing or

convergence rate. Thus, more iterations are needed to obtain any given degree of accuracy in

posterior inferences. On the other hand, the algorithm has a shorter execution time when N is

small. Increasing N causes the execution time to increase, but the sampler will mix more quickly.

From an efficiency standpoint, appropriate tuning of N is required to optimize this MCMC efficiency

trade-off. Similar to Andrieu et al. (2010), we seek an N that maximizes ESJD/N . Other ways of

balancing mixing rate with computational cost are possible and require more study. An adaptive

approach for updating N is in Andrieu et al. (2010) and can be applied to our PM algorithms. It

is not pursued here.

The MCWM algorithm is different. One can get good convergence rates and mixing behavior

regardless of N (the reader will witness this in the simulation study in Section 7; specifically in

Figures 3 and 6). However, MCWM may yield an inaccurate estimate of π(M)(θ|x) if N isn’t

large enough. This can be seen in Figure 3 where the estimated marginal posterior density of

σ, π(M)(σ|x), is poor when N = 1, 2, 5, 10 (better estimates are obtained when N = 20), and in

Figure 6 where the estimated marginal posterior densities of σ and ρ remain unsatisfactory even

when N = 20. The performance of the MCWM algorithm depends on how well the importance

sampling estimator approximates the transition density. A qualitative and asymptotic result is in

11



Stramer and Yan (2007) where N = M2. The heuristic reason is that the error due to the bias

of the Euler approximation is O(1/M) and the Monte Carlo error is O(1/
√

N). Thus to match

the two different sources of error, we need N = M2. We suggest letting N = N0 where N0 is the

minimum value where the marginal posterior densities remain relatively unchanged for N > N0.

6 Application: Stochastic Volatility Models

The MCWM and PM algorithms can be applied to stochastic volatility (SV) models of the form

[Yt, Vt] where Yt is the log-price of a stock or the short term interest rate with volatility σY (·) which

is a function of a latent diffusion V . We assume that [Yt, Vt] follows,

dYt = µY (Yt, Vt, θ) dt + ρσY (Yt, Vt, θ) dWt +
√

1 − ρ2 σY (Yt, Vt, θ) dBt

dVt = µV (Yt, Vt, θ) dt + σV (Yt, Vt, θ) dWt,

where B and W are two independent standard Brownian motions, and the instantaneous correlation

between dYt and dVt is controlled by ρ. We assume the process Y is observed (possibly with noise)

at discrete time points ti = i∆ (i = 0, . . . , n) yielding observations y = (y0, . . . , yn).

The Heston model, proposed in Heston (1993), and its variants are commonly used SV models

where the instantaneous variance process V is defined by the CIR model in (14). The Heston model

Xt = [Yt, Vt]
T follows:

dYt = (µ − 0.5Vt) dt + ρ
√

Vt dWt +
√

1 − ρ2
√

Vt dBt (10)

dVt = β(α − Vt) dt + σ
√

Vt dWt (11)

Option prices being traded assets, we need to endow the time series model (10)-(11) with risk premia

for arbitrage-free pricing under the auxiliary pricing measure Q. To keep the simulation study

simple we make the assumption of risk premia such that Wt = W Q
t and dBt = dBQ

t + r−µ√
(1−ρ2)Vt

dt

and no adjustments in the variance drift are necessary (α = αQ and β = βQ).

Instantaneous stochastic variance is latent, even though a time series of implied variance is often

available (for example the VIX implied volatility index published by the CBOE). To account for

the stochastic nature and mean reversion of index variance, we use the fact that for short-maturity

at-the-money options the Black-Scholes formula is approximately linear in volatility. Affinity of

the variance Q-drift (which is the same as the drift in (11) because we assume zero risk premia)

together with Fubini’s theorem enables us to write:

1

ξ
E

Q
t

[
∫ t+ξ

t

Vs ds

]

= A(α, β, ξ) + B(β, ξ)Vt, ξ > 0 (12)

12



where

B(β, ξ) =
1 − e−ξβ

ξβ
, A(α, β, ξ) = α(1 − B(β, ξ)).

We take average expected variance as a proxy for implied variance IVt,

IVt ≈
1

ξ
E

Q
t

[
∫ t+ξ

t

Vs ds

]

, (13)

and choose ξ = 22/252 as in Jones (2003). This approximation has been used in Aı̈t-Sahalia

and Kimmel (2007), Johannes, Polson and Stroud (2009), Chernov, Gallant, Ghysels and Tauchen

(2003), Eraker (2004), and Jones (2003).

The likelihood function for Heston’s model is not known in closed form1, hence the need for the

PM and MCWM algorithms. To apply the PM and MCWM algorithms, denote the transition den-

sity of (Yti+1
, IVti+1

) = (yi+1, ivi+1) given (Yti , IVti) = (yi, ivi) by p(Y,IV )(∆, (yi+1, ivi+1)|(yi, ivi), θ)

and that of (Yti+1
, Vti+1

) = (yi+1, vi+1) given (Yti , Vti) = (yi, vi) by p(Y,V )(∆, (yi+1, vi+1)|(yi, vi), θ).

Using simple transformation techniques, from (12) and (13) we have

p(Y,IV )(∆, (yi+1, ivi+1)|(yi, ivi), θ) =
p(Y,V )(∆, (yi+1, vi+1)|(yi, vi), θ)

B(β, ξ)

where vi = ivi−A(α,β,ξ)
B(β,ξ) . For ease of notation we omit (Y, V ) from p(Y,V ). The likelihood function is

L(y, iv|θ) =
n−1
∏

i=0

p (∆, (yi+1, vi+1)|(yi, vi), θ)

B(β, ξ)
.

The transition density p (∆, (yi+1, vi+1)|(yi, vi), θ) is not available, but can be estimated as in (7)

where Uik = (Ui,k,1, . . . , Ui,k,M−1), k = 1, . . . , N , is a random sample from the two dimensional

MBB defined in (3) with starting point (yi, vi)
T and end point (yi+1, vi+1)

T . We denote this

estimator by p(M,N) (∆, (yi+1, vi+1)|(yi, vi), θ). Similarly to (8), we can now define

πNew Target
(M,N) (θ,u|y, iv) ∝ π(θ)

n−1
∏

i=0

p(M,N) (∆, (yi+1, vi+1)|(yi, vi), θ)

B(β, ξ)

×
n−1
∏

i=0

N
∏

k=1

q(ui,k,1, . . . , ui,k,M−1|θ)

where v = (v0, . . . , vn), vi = Vti , and q(·|θ) is the MBB sampler defined in (3). The MCWM and

PM algorithms now proceed similarly to the algorithms in Sections 3 and 4.

1See Lamoureux and Paseka (2005) for an expression of the density of the Heston model using a Fourier inversion of
the characteristic function. This reduces the dimensionality of the required integration to a one dimensional integral,
the remaining integral is over a modified Bessel function of non integer order.
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7 Simulation Study

7.1 CIR Model

The CIR model (Cox, Ingersoll and Ross, 1985) is characterized by the SDE

dXt = β(α − Xt) dt + σ
√

Xt dWt (14)

where α is the mean reverting level, β is the speed of the process, and σ is the volatility parameter.

Since this model has a known transition density, which is a scaled non-central chi-squared distri-

bution, and is frequently used in applications, it provides a convenient means of evaluating the

effectiveness of the PM and MCWM algorithms. We compare Bayesian analyses using the exact

(non-central chi-square) CIR transition density (and likelihood) in a standard Metropolis-Hastings

(MH) sampler, the PM algorithm, and the MCWM algorithm.

For the simulation study, we generate two data sets from the true CIR transition density with

n = 500, α = 0.07, β = 0.15, and σ = 0.07. The commonly analyzed monthly FedFunds dataset

(see Section 8) yields parameter estimates close to α = 0.07, β = 0.15, and σ = 0.07. We used

∆ = 1 (yearly) and ∆ = 1/12 (monthly), thus our simulated datasets mimic yearly as well as

monthly real-world data. For more discussion of the FedFunds dataset, see Section 8.

We apply the random scan Gibbs sampler which randomly selects a component(s) of the pa-

rameter vector θ to update within each iteration. Our sampler randomly selected either a joint

(α, β)−move or a σ−move; the joint (α, β)−move was chosen with probability 2/3 and a σ−move

was chosen with probability 1/3. Uniform random walk proposals were used throughout, although

more optimal proposals could certainly be envisioned. The prior is defined in (15). All simulation

studies focus on σ since convergence and mixing behavior for σ is the most problematic. All algo-

rithms were run for 500,000 iterations including a 100,000 iteration burn-in period (this eliminates

the effect of the initial starting point).

We wrote all computer code in the C++ language. The C-based non-central chi-square functions

used by the R software package (http://www.r-project.org) were called from within C++ for the

exact–likelihood analyses. It should be noted that the importance samples in block i are generated

independently from the importance samples in block j, i 6= j. This lack of dependency can be

exploited if multiple processors are available. Each processor can be given the task of generating

the importance samples for some subset of the blocks, decreasing the execution time (a similar

strategy can be used when evaluating the likelihood). This parallelization was performed using the

OpenMP software package (http://www.openmp.org). One difficulty, however, is generating the

random variates across multiple processors; specifically, seeding the individual processors can be

problematic if one is not careful. Recently, much work has been done in this area. One option is to

use the SPRNG package (http://sprng.cs.fsu.edu), another less complex option is to use the
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Figure 1: Yearly data: Estimated marginal posterior distribution of σ (in black) for PM with
M = 2, 5, 10, 20, 40 and N = 20. Exact sampler is depicted in red.
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Figure 2: Monthly data: Estimated marginal posterior distribution of σ for PM (black lines) with
M = 2, 5, 10 and N = 20; the exact sampler is depicted in red.

cryptography-based PURG package (http://bill.cochranpages.com). Although PURG lacks

built-in generators for the common statistical distributions, we simply transformed its uniform

random variates into normal random variates (which are extensively used in the MBB) using the

Box–Muller method.

First, we chose the number of sub-intervals M by comparing the behavior of the PM algorithm

to the exact algorithm with different values of M . The estimated marginal posterior densities

π(σ|x) using the PM algorithm and the exact algorithm are shown in Figure 1 for yearly data and

in Figure 2 for monthly data. Clearly, the discretization with M = 20 (M = 5) can be considered

to be sufficiently fine for yearly (monthly) data; we use M = 20 (M = 5) for the remainder of the

analysis of the yearly (monthly) dataset.

We next consider the question of choosing the number of importance samples N for the PM

and MCWM algorithms. For yearly data, the left panel of Figure 3 displays the estimated marginal

posterior distribution of σ for the PM and MCWM algorithms with M = 20 and N = 1, 2, 5, 10, 20

(the exact algorithm is also shown). For the monthly data, Figure 4 depicts the estimated marginal

posterior densities for PM and MCWM with M = 5 and N = 1, 2, 5. Clearly, increasing N

allows the MCWM algorithm to more accurately approximate the posterior distribution π(M)(θ|x)

regardless of the time step ∆. Although MCWM does not have π(M)(θ|x) as its limiting distribution

for any finite N , the limiting distribution is quite close to π(M)(θ|x) for sufficiently large N . Note

that increasing M will require a subsequent increase in N ; one would need N > 20 for the yearly

data (where M = 20), while N = 5 or 10 would probably be sufficient for the monthly data (where

M = 5).
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Figure 3: Yearly data: Left panels depict the estimated marginal posterior distribution of σ for
PM (solid black line) and MCWM (dotted black line) with M = 20 and N = 1, 2, 5, 10, 20; the
exact sampler is depicted in red. Second column depicts trace plots of the first 10,000 post-burn-
in iterations of the PM sampler; right two panels depict the ACF (ACF plots are based upon
post-burn-in sampler output only) for the PM and MCWM samplers.

Trace plots for σ using a portion of the yearly PM output is shown in the second column of

Figure 3. Trace plots for MCWM are not shown as rapidity of mixing is largely unaffected by N .

Autocorrelation function (ACF) plots for the PM and MCWM samplers are depicted in the right

two columns. For the PM algorithm, it can be seen that N dramatically influences the rapidity of

mixing. Small N deflates the acceptance probability (and mixing rate), increases autocorrelation,

and will thus require the samplers to be run longer to obtain any given degree of accuracy in the

posterior estimates. Increasing N dramatically improves mixing behavior and usefully decreases
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Exact N = 1 N = 2 N = 5 N = 10 N = 20

PM Yearly 0 .375 0.020 0.072 0.167 0.233 0.280
Monthly 0 .355 0.263 0.300 0.328 0.338 0.344

MCWM Yearly 0 .375 0.403 0.392 0.377 0.372 0.370
Monthly 0 .355 0.352 0.349 0.349 0.352 0.354

Table 1: Acceptance rates for σ using the PM and MCWM algorithms. Yearly is calculated with
M = 20 and monthly with M = 5. Acceptance rates for the exact algorithm are also included.
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Figure 4: Monthly data: Estimated marginal posterior density plots for PM (solid black line) and
MCWM (dotted black line) with M = 5 and N = 1, 2, 5. The exact sampler is also displayed (red
line).

the ACF. We found this to be especially true for yearly data; mixing behavior for the monthly

data improved as N increased, but not nearly as dramatically (graph not shown). The MCWM

samplers mixed rapidly for both the yearly and monthly data. Although the MCWM chain mixes

rapidly when N is small, it clearly does not converge to the desired limiting distribution.

Acceptance rates for σ when N = 1, 2, 5, 10, 20 are shown in Table 1. For the PM algorithm,

the acceptance rate for σ is strictly increasing in N , the increase being most dramatic for the yearly

data. The acceptance rates for the MCWM algorithm don’t appreciably change with N , however.

Table 2 displays the estimated ESJD for the PM algorithm. The ESJD is strictly increasing in

N , not surprisingly the increase is most pronounced for the yearly data. Based upon the ESJD/N

metric in Table 2, it appears that N = 1 yields the most efficient algorithm for monthly data, while

N = 2 is most efficient for yearly data.

In our simulation studies (and in the FedFunds analysis in Section 8), the PM algorithm was

approximately 3 times faster than MCWM for any given combination of M and N . The speed

Exact N = 1 N = 2 N = 5 N = 10 N = 20

ESJD × 10−6 Yearly 4 .534 0.340 1.045 2.389 3.090 3.559
Monthly 4 .264 3.518 3.884 4.162 4.238 4.250

ESJD/N × 10−6 Yearly 4 .534 0.340 0.523 0.478 0.309 0.178
Monthly 4 .264 3.518 1.942 0.832 0.424 0.213

Table 2: Expected squared jump distance (ESJD) for σ using the PM algorithm with M = 20 for
yearly data and M = 5 for monthly data. ESJD for the exact algorithm is also included.
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N = 1 N = 2 N = 5 N = 10 N = 20

σ Acc. Rate 0.194 0.103 0.070 0.056 0.031
ui Acc. Rate 0.047 0.122 0.243 0.490 0.986

Table 3: Acceptance rates for σ and blocks of missing ui (fixing α = 0.07 and β = 0.15) using a
blocking strategy. Simulated yearly data, calculated with M = 20 and N = 1, 2, 5, 10, 20.

differential depends upon several factors, but it mainly depends on the probability of choosing a

σ−move. In our simulation studies, we chose a σ−move with probability 1/3. Increasing this

move probability will increase the number of importance samples that need to be generated and

thus slow down the PM algorithm. This added computational burden will yield more rapid mixing

for σ since we attempt to update σ more often. Decreasing the σ−move probability increases the

speed of the algorithm while decreasing the rapidity of mixing of the σ parameter. Because the

MCWM algorithm generates two fresh sets of importance samples within every iteration (i.e., for

both (α, β)−moves and σ−moves), it is largely unaffected by the move probabilities.

We now demonstrate the inefficiencies of the blocking strategy described in Section 4. Using

the yearly simulated dataset, the acceptance rates for the volatility σ and the blocks ui are shown

in Table 3 (we used M = 20 and N = 1, 2, 5, 10, 20). As N increases, it is clear that the acceptance

rate for σ decreases, while the acceptance rate for the blocks ui increase.

7.2 Heston Model: Weekly Data (∆ = 1/52)

We compare Bayesian analyses using the PM and MCWM algorithms. For the simulation study,

we generate one dataset from the Heston model defined in (10)-(11) with α = 0.1, β = 3, µ = 0.05,

ρ = −0.8, and σ = 0.25 using an Euler discretization of the process. We use 100 sub-intervals per

sampling interval; 99 out of every 100 observations are then discarded, leaving only observation at

a weekly frequency. We generate 1000 observations, but discard the first 500 (see Aı̈t-Sahalia and

Kimmel, 2007).

As in Kalogeropoulos et al. (2010), we assume a flat prior for all parameters, restricting α >

0, β > 0, σ > 0, and ρ ∈ (−1, 1). Our simulation study focuses on σ and ρ since convergence

and mixing behavior for the covariance coefficient is the most problematic. The systematic scan

Gibbs algorithm used the following proposals: α∗ ∼ N(α, 0.12), β∗ ∼ N(β, 1.02), σ∗ ∼ N(σ, 0.12),

µ∗ ∼ N(µ, 0.4472), and ρ∗ ∼ N(ρ, 0.12) (the parameters were updated in this order as well). All

algorithms were run for 110,000 iterations including a 10,000 iteration burn-in period (for the

systematic scan algorithm, one iteration consists of updating all 5 parameters).

We first consider the question of choosing M . We performed a simulation study using the PM

algorithm with M = 5, 10, 20, 30 and N = 20 (graphic is not shown). Unlike the CIR simulation

study, an exact sampler is not available, and thus we have no “reference” for comparison like we
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Figure 5: Weekly simulated Heston data: Estimated marginal posterior distribution of σ and ρ for
PM with with M = 20, N = 1, 2, 20. ACF is also depicted.

used in Figures 1 and 2 for determining an adequate value for M . What we can do, however, is

determine how large M must be for the marginal posterior distributions to “stabilize”. We found

that the estimated marginal posterior distributions remained virtually unchanged after increasing

M from 20 to 30, thus we consider the discretization with M = 20 to be sufficiently fine. We use

M = 20 in the remainder of this section.

We next consider the question of choosing the number of importance samples N . In Figure 5

we compare the PM algorithm with M = 20 and N = 1, 2 to the PM algorithm with M = 20

and N = 20. The estimated marginal posterior densities and the autocorrelation function (ACF)

indicate that the convergence rate when N = 1 is extremely slow, although using N = 2 offers

some improvement. Figure 6 displays the estimated marginal posterior density estimates and ACF

for the PM and MCWM algorithms with M = 20 and N = 5, 10, 20. The performance of the

PM algorithm is dramatically improved compared to when N = 1, 2. In fact, N = 5 with 100,000

(post burn-in) iterations can yield sufficiently accurate posterior estimates for the PM algorithm.

Clearly, the MCWM algorithm will yield inferior posterior estimates even when N = 20, thus a

larger N is needed to provide acceptable results.

8 Real Data

8.1 CIR Model: FedFunds Dataset

We now test the PM and MCWM algorithms with the FedFunds rate data observed monthly from

January 1963 to December 1998 (n = 432) (see Figure 7). As in Di Pietro (2001) and Aı̈t-Sahalia

(1999), we chose the CIR model for the FedFunds rate for illustrative reasons; more complex models,

like regime-switching models or SDE models with time-varying parameters, are potentially better

models for the FedFunds data (see Di Pietro, 2001).
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Figure 6: Weekly simulated Heston data: Left panels depict the estimated marginal posterior
distribution of σ and ρ; right panels depict the ACF. Our plots are based on PM (black) and
MCWM (red) with M = 20, N = 5, 10, 20.

Our prior specification is similar to Di Pietro (2001). The parameter α is the mean reverting

level. We note that interest rates are non-negative, and the FedFunds rate peaked at just over

22.36% (or 0.2236) in 1981; worldwide, however, there is no clear upper bound for interest rates

(in Zaire, the interest rate topped 10,000% in 1994). The prior on α should be dictated by the

economy being modeled. For the FedFunds rate, we place a Unif(0, 1) prior on α. We assume that

the process exhibits mean reversion (commonly exhibited by interest rates), and thus constrain

β > 0 (if β < 0, then the process runs away from the mean α). Since σ is the scale parameter of

the Brownian motion, we specify the prior on σ in the usual way, σ−1I(0,∞)(σ), where I denotes

the indicator function. Thus, the joint prior is

π(θ) = π(α, β, σ) = I(0,1)(α) I(0,∞)(β) σ−1I(0,∞)(σ) (15)

Random walk proposals were used: the joint proposal (α∗, β∗) in the (α, β)−move was generated
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Figure 7: Figure depicts the monthly FedFunds Rate (in percent) from January 1963 to December
1998.

by choosing α∗ ∼ Unif(α− 0.05, α + 0.05) and β∗ ∼ Unif(β − 0.125, β + 0.125), the σ−move used

σ∗ ∼ Unif(σ − 0.01, σ + 0.01).

To determine the optimal amount of discretization, we ran PM chains with M = 2, 5, 10, 20

and N = 10, and plotted the estimated marginal posterior densities π(α|x), π(β|x), and π(σ|x)

(the graphic is not shown, but it is similar in flavor to Figure 1). For choosing M (and N below),

all algorithms were run for 510,000 iterations including a 10,000 iteration burn-in period. The

estimated marginal posterior densities are approximately the same for M = 10 and M = 20 (while

M = 2, 5 noticeably differed); thus, we consider the discretization with M = 20 to be sufficiently

fine (using M = 10 would probably suffice, however).

We next consider the question of choosing the number of importance samples N . Using M = 20,

we ran PM chains with N = 1, 2, 5, 10, 20 and recorded the expected squared jump distance (ESJD)

for σ. The results are in Table 4. As in the simulation study, the ESJD increases with the number of

importance samples N , however, the algorithm is most efficient (according to the ESJD/N metric)

with N = 1; this was also the case for the simulation study with monthly data.

In Figure 8 we show the estimated marginal posterior densities constructed using the output of

PM and MCWM chains with M = 20 and N = 5 (the output from the exact sampler is depicted

for comparison). All chains were run for 500,000 iterations (not including a 10,000 iteration burn-in

period) on a Debian GNU Linux machine utilizing an Intel i7 2.8GHz quad-core processor. Both

the PM and MCWM samplers yield excellent marginal posterior density estimates, though, when

compared to the PM results, the MCWM sampler appears to yield slightly inferior estimates. The

Exact N = 1 N = 2 N = 5 N = 10 N = 20

ESJD× 10−6 4 .391 3.349 3.913 4.133 4.259 4.420
ESJD/N × 10−6 4 .391 3.349 1.957 0.827 0.426 0.221

Table 4: FedFunds data. Expected squared jump distance (ESJD) for σ using the PM algorithm
with M = 20 and N = 1, 2, 5, 10, 20. ESJD for the exact algorithm is also included.
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Figure 8: FedFunds data. Estimated marginal posterior distribution of α, β, and σ for PM (solid
black lines) and MCWM (dotted black lines) with M = 20 and N = 5. The exact sampler is
depicted in red.
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Figure 9: FedFunds data. Estimated marginal posterior distribution of α, β, and σ using the prior
of Di Pietro (in black) and an informative prior (in red). PM sampler used M = 20 and N = 5.

PM sampler is much more efficient as the execution time for the PM sampler was approximately 50

minutes while the MCWM sampler took 153 minutes. The estimates from the MCWM algorithm

could be improved if N was increased, albeit with a subsequent increase in execution time.

Finally, we performed a small sensitivity analysis. We compared Di Pietro’s prior (15) with a

truncated Gaussian prior

π(θ) = π(α, β, σ) ∝ I(0,1)(α)φ(α; 0.1, 0.22) I(0,∞)(β)φ(β; 0.1, 0.42) I(0,∞)(σ)φ(σ; 0.1, 0.12)

Figure 9 indicates that all parameters are quite robust to the choice of prior, especially α and σ.

The speed β seems a little more sensitive to the prior as the drift parameters α and β are typically

the most difficult to estimate (especially β).

8.2 Heston Model: S&P 500, VIX Bivariate Dataset

The bivariate S&P 500 and VIX implied volatility data recorded daily (∆ = 1/252) from January

2, 1998 to December 31, 2003 is depicted in Figure 10. The VIX tends to rise as fear and uncertainty

in the market increases. The VIX, quoted in terms of percentage points, approximates the expected

movement in the S&P 500 index over the next 30-day period on an annualized basis. If, for example,

the VIX is at 40, then the expected annualized change is 40% over the next 30 days; in other words,

we can expect the S&P 500 to move up or down 40%/
√

12 = 11.5% over the next 30-day period.

Via normality, one can assume that there is a 68% likelihood that the S&P 500 will move less than
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Figure 10: Figure depicts the S&P 500 (in black) and VIX implied volatility (in red) observed daily
from January 2, 1998 to December 31, 2003. The scale for the S&P 500 is depicted on the left axis,
the scale for the VIX is depicted on the right axis.

11.5% in the next 30 days (thus, there is a 32% chance that the S&P 500 moves more than 11.5%

in the next 30 days!)

We use Heston’s model, defined in (10)-(11), for this dataset. We adopt relatively non-

informative priors: α ∼ N(0.1, 102) (truncated to R+), β ∼ N(2, 102) (truncated to R+), σ ∼
N(0.5, 102) (truncated to R+), µ ∼ N(0.1, 102), ρ ∼ N(−0.5, 102) (truncated to (−1, 1)). The

systematic scan Gibbs algorithm used the following proposals: α∗ ∼ N(α, 0.12), β∗ ∼ N(β, 1.4142),

σ∗ ∼ N(σ, 0.12), µ∗ ∼ N(µ, 0.4472), and ρ∗ ∼ N(ρ, 0.1222) (the parameters were updated in this

order as well). Both the PM and MCWM algorithms used M = 10 and N = 5, 20. Each algorithm

was run for 100,000 iterations (one iteration consists of updating all 5 parameters) following a

10,000 iteration burn-in period.

For stochastic volatility models, the priors are much more important in analyzing drifts than

volatilities, especially for high frequency data. This is because inferences about volatility parameters

become arbitrarily accurate, at least in theory, as the sampling interval shrinks to zero. This is not

true for the drift parameters, however. For stochastic volatility models, we are able to eliminate

most posterior variance for (σ, ρ) by using daily data; any reasonably diffuse prior will have little,

if any effect on the posterior. However, high frequency data provides very little information about

the drift parameters. The drift estimate strongly depends on the length T of the available data. As

noted by Aı̈t-Sahalia and Kimmel (2007), “The volatility can be estimated to an arbitrary degree

of precision by sampling frequently enough, but the drift estimate is independent of sampling

frequency.” Thus, inference for the drift is robust to the choice of the prior if we observe the data

over a long enough time period. The simulation study in Section 7.2 had 500 observations of weekly

data (∆ = 1/52), and thus the drift parameters turned out to be reasonably robust to the choice

of prior. For the S&P 500 VIX dataset, we observed n = 1,508 observations of daily data which,

relatively speaking, contains much less information about the drift parameters.

Figure 11 displays the estimated marginal posterior distributions of α, β, σ, µ, and ρ and the

autocorrelation function (ACF) for each sampler. The MCWM algorithm appears to inflate the
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Figure 11: S&P 500, VIX analysis: Left panels depict the estimated marginal posterior distribution
of α, β, σ, µ, and ρ for the PM and MCWM algorithms using M = 10 and N = 5, 20 and for the
GW algorithm with M = 10; right panels depict the corresponding ACF plots.

marginal posterior variance compared to the PM algorithm. Increasing N in the MCWM algorithm

allows the marginal posterior distributions to be more closely approximated, but N = 20 still

appears to be too small to obtain sufficiently accurate estimates. On the other hand, the estimated

marginal posterior distributions are virtually identical for the PM algorithm when N = 5, 20.

Unlike MCWM, the PM algorithm benefits from decreased autocorrelation for σ and ρ when N is

increased from 5 to 20 (this comes with additional computational expense, however). Using N > 20

in the PM algorithm would probably yield little (if any) benefit in terms of autocorrelation, but

would be more computationally costly.
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Golightly-Wilkinson Algorithm

Golightly and Wilkinson (2008) introduced a transformation and an MCMC data augmentation

algorithm which has been empirically shown to have good convergence rates when M is “big”. This

approach utilized the MBB samplers. We found the Golightly-Wilkinson (GW) approach to work

quite well for the Heston model, although the updates are quite computationally demanding. For

a given number of imputed data points, the PM approach with N = 3 is roughly the same speed,

iteration to iteration, as GW.

We ran GW algorithm on the S&P500/VIX dataset using the same prior, proposals, and number

of imputed (M = 10) as the PM analysis. Figure 11 shows that the estimated marginal posterior

densities closely mirror those for PM. The ACF’s for the GW algorithm are comparable to PM

with N = 20. To obtain comparable Monte Carlo errors, it takes the PM algorithm (with N = 20)

approximately 7 times as long to execute as GW. However, PM appears to be more amenable

to efficient parallelization (although we haven’t parallelized GW, our experience suggests that the

speed increase will be less dramatic than parallelized PM). The time disadvantage of PM may be

minimized given appropriate resources. In addition, we believe that PM will more easily scale to

higher dimensional models; because GW involves the Jacobian, it will be computationally more

intense for models with complicated covariance functions.

9 Discussion

We have proposed Monte Carlo within Metropolis (MCWM) and pseudo-marginal (PM) algorithms

for simulating from the posterior distribution of the Euler-Mayumara approximation to diffusions.

These algorithms can be applied to a broad class of multidimensional non-reducible diffusion pro-

cesses which are observed (possibly with noise) only at discrete time points. These algorithms avoid

the need for re-parametrization techniques that are not always available and/or justified; many are

computationally intense.

Our simulation study focused on the Cox-Ingersoll-Ross (CIR) and Heston models. It demon-

strated a strategy for choosing the number of sub-intervals M between observed data points, the

effect of the number of importance samples N on the mixing behavior of the PM algorithm (and

its lack of effect on mixing in for MCWM), the superiority of posterior inferences when using the

PM algorithm (compared to MCWM), and the heightened computational efficiency of the PM al-

gorithm. Our analysis of the FedFunds rate using the CIR model, and our analysis of the bivariate

S&P 500/VIX dataset using Heston’s model, demonstrated the efficacy of the PM and MCWM

algorithms with real-world data, reiterated PM’s efficiency advantage over MCWM, and demon-

strated that, unlike the PM algorithm, the MCWM algorithm has a limiting distribution close to,

but not exactly, the desired posterior distribution. A potential downside of the PM algorithm is
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its dependence on the Markov property. The PM algorithm is not efficient when some components

of the diffusion process are not observed and cannot be extracted. Finally, further work is required

to investigate the relative merits of re-parametrization approaches (see Section 2) to the PM and

MCWM schemes. Our analysis of the S&P 500/VIX dataset shows that Golightly-Wilkinson (GW)

algorithm, a competitor of the PM algorithm, works very well for the Heston model. However, the

efficacy of GW for more complex models needs to be explored. With two viable approaches, prac-

titioners have the option to choose the algorithm with the best convergence and mixing properties

for their model.
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